Modelling Complex Fenestration Systems in TRNSYS – a Comparison between a Simplified and a Detailed Thermal Model

- Energy demand, thermal and visual comfort analysis of Complex Fenestration Systems (CFS) with TRNSYS
- Integrated and coupled energy and daylighting simulation
- Comparative case study of two calculation models characterizing the thermal behavior of a shading device

Giuseppe De Michele, Ulrich Filippi Oberegger, Luca Baglivo
Institute for Renewable Energy, European Academy of Bozen/Bolzano, Italy.
giuseppe.demichele@eurac.edu, ulrich.filippi@eurac.edu, luca.baglivo@eurac.edu
+39 0471 055 600, Via Luis-Zuegg 11, 39100 Bozen/Bolzano

Abstract

This work compares two calculation models for the CFS performance simulation within the software TRNSYS: the first is the standard model for fenestration systems adapted to work also with CFS; the second is a more detailed model, which is currently released as prototype. While the standard model uses a simplified approach based on the shading factor, the new model follows the standard ISO 15099 which is based on the radiosity method and takes into account the Bidirectional Scattering Distribution Function (BSDF) for the shortwave solar radiation. The aim is to assess whether a more detailed model leads to perceptibly different results and thus is worth the effort.

Starting from a refurbishment project of a shopping mall in Italy, the two approaches are compared by evaluating ideal energy demand, thermal comfort and visual comfort on an hourly basis. A single thermal zone is used. The west façade of the zone is fully glazed. Double windows with solar control and external venetian blinds with variable slat angle compose the CFS.

Besides the comparison of the two calculation models, two different control strategies for the shading device are investigated. The first control aims at maintaining visual comfort. The second control aims at improving the thermal comfort and reducing the energy demand.

In order to consider the effects of the CFS on the visual comfort, we developed a novel TRNSYS Type called “TypeDLT”. The Type can perform climate-based daylighting simulations using the Radiance engine and implements the “three-phase method” to compute the indoor illuminance
values at each simulation time-step. It takes as input the BSDF data for each state of the CFS, determined by the slat angle of the blinds, and the weather file from the TRNSYS model. A user-defined strategy controls the shading state according to specified performance targets (e.g. desired comfort temperature or illuminance), thus allowing the simulation of an automatic shading control.

Key words: complex fenestration system, thermal modelling, BSDF, TRNSYS, coupled daylighting and energy simulation, thermal and visual comfort

CV – Giuseppe De Michele

Giuseppe De Michele holds an MSc degree in Environmental Engineering at University of Trento, Italy. In his Master thesis has participated to the development of a new tool for daylighting simulation of complex fenestration systems in TRNSYS. Currently, he is collaborating with the Institute of Renewable Energy of Eurac in the field of building physics. In particular, his activity mainly focuses on energy efficiency and internal comfort in buildings through integrated energy and daylighting simulations.

CV - Ulrich Filippi Oberegger

Ulrich Filippi Oberegger holds a PhD in Engineering Sciences at University of Innsbruck, Austria. Currently, he is a senior researcher in the field of building physics at the Institute for Renewable Energy of the European Academy of Bozen/Bolzano, Italy. His main research activities are in the field of modeling, dynamic simulation, analysis and optimization of energy systems in buildings.

CV – Luca Baglivo

Luca Baglivo holds a PhD in Mechanical Measurements for Engineering at University of Padua, Italy. Currently, he is a senior researcher in the field of building physics and photovoltaic systems at the Institute for Renewable Energy of the European Academy of Bozen/Bolzano, Italy. His main research activities involve experimental testing of building envelope systems for energy performance assessment, testing of PV modules, daylighting simulations and measurements for engineering and automation. He is responsible of indoor test facilities for performances analysis of building envelope, fenestration systems and PV modules.