Uncertainty Reduction for Retrofit Saving Estimates in Residential Buildings Using Validated Building Energy Simulation Models

Maja Miletic, Chiara Dipasquale, Peter Grant, Roberto Fedrizzi
INTRODUCTION

• In the field of **existing buildings retrofit**, the estimation of energy savings is fundamental for the selection of envelope and HVAC system solutions to be adopted;

• A reliable model of the existing building helps for a more precise **energy consumption estimation**;

• Calibration models with monitored data can return a reliable picture of the **real building behaviour**.
INTRODUCTION

Challenges of simulations for energy measures savings estimation:

• Simulation predictions differ from actual consumption;
• Calibration can reduce this error, but solution is not unique;
• Impact of non-technical factors as behavioural is quite high – infiltration, ventilation, shading devices are usually not scheduled or monitored.

→ Need of a methodology for modelling and calibrating the building behaviour and creating realistic annual behavioural patterns
INTRODUCTION

Calibration of residential buildings models:

Simulation model preparation and parameter space definition → How to define the parameter space?

Sensitivity study

Solution space exploration and parameters vector identification → How to choose the parameter vector?

Match measured data and satisfy calibration criteria → Lack of the validation phase
METHODOLOGY

Calibration based on optimization performed by varying parameters within suitable ranges.
METHODOLOGY

Cost function - $J(p)$

\[
J(p) = \sum_{k=1}^{n_S} \sum_{z \in Z} \left(w_Q \int_{t_k}^{t_{k+1}} \left(\dot{Q}^Z_s(t) - \dot{Q}^Z_m(t) \right) dt \right) + w_T |T^Z_s(t_k) - T^Z_m(t_k)|
\]

Total energy demand error

(simulated value – monitored value)
METHODOLOGY

Cost function - $J(p)$

$$J(p) = \sum_{k=1}^{n_S} \sum_{z \in Z} \left(w_Q \left| \int_{t_k}^{t_o} (\dot{Q}_s^z(t) - \dot{Q}_m^z(t)) \, dt \right| + w_T \left| T_s^z(t_k) - T_m^z(t_k) \right| \right)$$

Indoor temperature error
(simulated value – monitored value)
METHODOLOGY

Cost function - $J(p)$

$$J(p) = \sum_{k=1}^{n_S} \sum_{z \in Z} \left(w_Q \left| \int_{o}^{t_k} \left(Q_{s}^z(t) - Q_{m}^z(t) \right) dt \right| + w_T \left| T_{s}^z(t_k) - T_{m}^z(t_k) \right| \right)$$

Weight factors to well balance the error terms
METHODOLOGY

PROBLEM

How to identify the parameters vector between all the possible solutions?
Uncertainty reduction strategy

Regularization

Add a penalty term to exclude improbable solutions:

1. **Available information** taken from energy audit, data sheets, lab tests, measurements...;
2. An **initial guess** is done within a set of parameters;
3. Parameters are sorted based on **information source reliability**.

How to define the parameter space?

How to choose the parameter vector?
Uncertainty reduction strategy

Regularization - $R(p)$

$$R(p) = \lambda \sum_{i \in \text{Source}} w_i \frac{|p_i - p_i^{\text{init}}|}{p_i^{\text{max}} - p_i^{\text{min}}}$$

Normalized parameter distances to their initial guess
Uncertainty reduction strategy

Regularization - $R(p)$

$$R(p) = \lambda \sum_{i \in S_{Source}} w_i \frac{|p_i - p_i^{init}|}{p_i^{max} - p_i^{min}}$$

Regularization weight and weight factor based on source hierarchy
Uncertainty reduction strategy

Regularized cost function – $J_{reg}(p)$

$J_{reg}(p) = J(p) + R(p)$

$\min_{p \in P} J_{reg}(p)$

Cost Function Regularization
Uncertainty reduction strategy

Calibration and Validation criteria

Normalized Mean Bias Error – NMBE

Coefficient of Variation of Root Mean Square Error - CVRMSE

+

Cumulative demand and temperature error averaged over all simulation steps for

- Energy demand AAE_d;
- Temperature AAE_t.

How to choose the parameter vector?
CASE STUDY

Building description

- Located in Madrid - Spain
- Built in 1970s
- 10 dwellings - 50 m²
- 5 floors
CASE STUDY

Building description

Monitoring data

- Outdoor air temperature (OAT)
- External relative humidity
- Solar radiation
- Heating consumption on the gas boiler pipelines
- Indoor air temperature (IAT)
- Relative humidity
- CO2 level
CASE STUDY

Building description

- 3D model is created in SketchUp
- Energy model is created in the TRNSYS environment
- Optimization is conducted with GenOpt
CASE STUDY

Simulation model and uncertain parameters

Aug, 5th - Jan, 31st - Apr, 12th

Calibration period - Validation period

Lack of validation phase
CASE STUDY

Simulation model and uncertain parameters

Aug, 5th	Jan, 31st	Apr, 12th
Calibration period | Validation period |

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SOURCE</th>
<th>RELIABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_{ext}, k_{int}, k_{roof}</td>
<td>Constructive elements catalogue by Spanish Institute of construction sciences</td>
<td>Medium</td>
</tr>
<tr>
<td>R_{closed}</td>
<td>Blower door test results</td>
<td>High</td>
</tr>
<tr>
<td>\dot{Q}_{Person}</td>
<td>Handbooks and standards</td>
<td>Medium</td>
</tr>
<tr>
<td>$T_{set,nei}$</td>
<td>From IAT measurements</td>
<td>Low</td>
</tr>
</tbody>
</table>

How to choose the parameter vector?
CASE STUDY

Optimization results w/ and w/o regularization

Preliminary values and realistic ranges

<table>
<thead>
<tr>
<th>NOTATION</th>
<th>UNIT</th>
<th>INITIAL</th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{closed}</td>
<td>[vol/h]</td>
<td>0.4</td>
<td>0.15</td>
<td>0.75</td>
</tr>
<tr>
<td>R_{open}</td>
<td>[vol/h]</td>
<td>2.0</td>
<td>0.4</td>
<td>5.5</td>
</tr>
<tr>
<td>\dot{Q}_{Person}</td>
<td>[W]</td>
<td>75</td>
<td>37.5</td>
<td>150</td>
</tr>
<tr>
<td>$T_{set, nei}$</td>
<td>[°C]</td>
<td>22</td>
<td>17</td>
<td>25</td>
</tr>
</tbody>
</table>

How to define the parameter space?
CASE STUDY

Optimization results w/ and w/o regularization

Preliminary values and realistic ranges

<table>
<thead>
<tr>
<th>NOTATION</th>
<th>UNIT</th>
<th>INITIAL</th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{closed}</td>
<td>[vol/h]</td>
<td>0.4</td>
<td>0.15</td>
<td>0.75</td>
</tr>
<tr>
<td>R_{open}</td>
<td>[vol/h]</td>
<td>2.0</td>
<td>0.4</td>
<td>5.5</td>
</tr>
<tr>
<td>\dot{Q}_{Person}</td>
<td>[W]</td>
<td>75</td>
<td>37.5</td>
<td>150</td>
</tr>
<tr>
<td>$T_{set, nei}$</td>
<td>[°C]</td>
<td>22</td>
<td>17</td>
<td>25</td>
</tr>
</tbody>
</table>

Solutions

<table>
<thead>
<tr>
<th>NOTATION</th>
<th>UNIT</th>
<th>REGULARIZED</th>
<th>NON-REGULARIZED</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{closed}</td>
<td>[vol/h]</td>
<td>0.26</td>
<td>0.15</td>
</tr>
<tr>
<td>R_{open}</td>
<td>[vol/h]</td>
<td>1.09</td>
<td>2.0</td>
</tr>
<tr>
<td>\dot{Q}_{Person}</td>
<td>[W]</td>
<td>88.5</td>
<td>35.7</td>
</tr>
<tr>
<td>$T_{set, nei}$</td>
<td>[°C]</td>
<td>20.2</td>
<td>17</td>
</tr>
</tbody>
</table>
CONCLUSIONS

• Importance of including initial guess or a-priori parameter distribution information;

• Number of "falsely calibrated models" can be reduced if new calibration criteria are added;

• Including criteria on the internal temperature helps to reduce uncertainty;

• Validation phase is required for proving the parameters suitability and individuating behavioural patterns for the estimation of building consumption.
THANK YOU

Chiara Dipasquale – chiara.dipasquale@eurac.edu

This document has been produced in the context of the FP7-iNSPiRe.

All information in this document is provided "as is" and no guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information at its sole risk and liability. For the avoidance of all doubts, the European Commission has no liability in respect of this document, which is merely representing the authors view.